Information on Result #552639

There is no linear OOA(2169, 166, F2, 2, 91) (dual of [(166, 2), 163, 92]-NRT-code), because 11 step m-reduction would yield linear OA(2158, 166, F2, 80) (dual of [166, 8, 81]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2169, 166, F2, 3, 91) (dual of [(166, 3), 329, 92]-NRT-code) [i]Depth Reduction
2No linear OOA(2169, 166, F2, 4, 91) (dual of [(166, 4), 495, 92]-NRT-code) [i]
3No linear OOA(2169, 166, F2, 5, 91) (dual of [(166, 5), 661, 92]-NRT-code) [i]
4No linear OOA(2169, 166, F2, 6, 91) (dual of [(166, 6), 827, 92]-NRT-code) [i]
5No linear OOA(2169, 166, F2, 7, 91) (dual of [(166, 7), 993, 92]-NRT-code) [i]
6No linear OOA(2169, 166, F2, 8, 91) (dual of [(166, 8), 1159, 92]-NRT-code) [i]