Information on Result #552745

There is no linear OOA(2173, 187, F2, 2, 87) (dual of [(187, 2), 201, 88]-NRT-code), because 1 step m-reduction would yield linear OA(2172, 187, F2, 86) (dual of [187, 15, 87]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2173, 187, F2, 3, 87) (dual of [(187, 3), 388, 88]-NRT-code) [i]Depth Reduction
2No linear OOA(2173, 187, F2, 4, 87) (dual of [(187, 4), 575, 88]-NRT-code) [i]
3No linear OOA(2173, 187, F2, 5, 87) (dual of [(187, 5), 762, 88]-NRT-code) [i]
4No linear OOA(2173, 187, F2, 6, 87) (dual of [(187, 6), 949, 88]-NRT-code) [i]
5No linear OOA(2173, 187, F2, 7, 87) (dual of [(187, 7), 1136, 88]-NRT-code) [i]
6No linear OOA(2173, 187, F2, 8, 87) (dual of [(187, 8), 1323, 88]-NRT-code) [i]