Information on Result #552754
There is no linear OOA(2173, 162, F2, 2, 97) (dual of [(162, 2), 151, 98]-NRT-code), because 17 step m-reduction would yield linear OA(2156, 162, F2, 80) (dual of [162, 6, 81]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2173, 162, F2, 3, 97) (dual of [(162, 3), 313, 98]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2173, 162, F2, 4, 97) (dual of [(162, 4), 475, 98]-NRT-code) | [i] | ||
3 | No linear OOA(2173, 162, F2, 5, 97) (dual of [(162, 5), 637, 98]-NRT-code) | [i] | ||
4 | No linear OOA(2173, 162, F2, 6, 97) (dual of [(162, 6), 799, 98]-NRT-code) | [i] | ||
5 | No linear OOA(2173, 162, F2, 7, 97) (dual of [(162, 7), 961, 98]-NRT-code) | [i] | ||
6 | No linear OOA(2173, 162, F2, 8, 97) (dual of [(162, 8), 1123, 98]-NRT-code) | [i] |