Information on Result #552802
There is no linear OOA(2175, 196, F2, 2, 85) (dual of [(196, 2), 217, 86]-NRT-code), because 3 step m-reduction would yield linear OA(2172, 196, F2, 82) (dual of [196, 24, 83]-code), but
- adding a parity check bit [i] would yield linear OA(2173, 197, F2, 83) (dual of [197, 24, 84]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2175, 196, F2, 3, 85) (dual of [(196, 3), 413, 86]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2175, 196, F2, 4, 85) (dual of [(196, 4), 609, 86]-NRT-code) | [i] | ||
3 | No linear OOA(2175, 196, F2, 5, 85) (dual of [(196, 5), 805, 86]-NRT-code) | [i] | ||
4 | No linear OOA(2175, 196, F2, 6, 85) (dual of [(196, 6), 1001, 86]-NRT-code) | [i] | ||
5 | No linear OOA(2175, 196, F2, 7, 85) (dual of [(196, 7), 1197, 86]-NRT-code) | [i] | ||
6 | No linear OOA(2175, 196, F2, 8, 85) (dual of [(196, 8), 1393, 86]-NRT-code) | [i] |