Information on Result #552831

There is no linear OOA(2176, 196, F2, 2, 86) (dual of [(196, 2), 216, 87]-NRT-code), because 4 step m-reduction would yield linear OA(2172, 196, F2, 82) (dual of [196, 24, 83]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2176, 196, F2, 3, 86) (dual of [(196, 3), 412, 87]-NRT-code) [i]Depth Reduction
2No linear OOA(2176, 196, F2, 4, 86) (dual of [(196, 4), 608, 87]-NRT-code) [i]
3No linear OOA(2176, 196, F2, 5, 86) (dual of [(196, 5), 804, 87]-NRT-code) [i]
4No linear OOA(2176, 196, F2, 6, 86) (dual of [(196, 6), 1000, 87]-NRT-code) [i]
5No linear OOA(2176, 196, F2, 7, 86) (dual of [(196, 7), 1196, 87]-NRT-code) [i]
6No linear OOA(2176, 196, F2, 8, 86) (dual of [(196, 8), 1392, 87]-NRT-code) [i]