Information on Result #552891

There is no linear OOA(2178, 191, F2, 2, 89) (dual of [(191, 2), 204, 90]-NRT-code), because 1 step m-reduction would yield linear OA(2177, 191, F2, 88) (dual of [191, 14, 89]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2178, 191, F2, 3, 89) (dual of [(191, 3), 395, 90]-NRT-code) [i]Depth Reduction
2No linear OOA(2178, 191, F2, 4, 89) (dual of [(191, 4), 586, 90]-NRT-code) [i]
3No linear OOA(2178, 191, F2, 5, 89) (dual of [(191, 5), 777, 90]-NRT-code) [i]
4No linear OOA(2178, 191, F2, 6, 89) (dual of [(191, 6), 968, 90]-NRT-code) [i]
5No linear OOA(2178, 191, F2, 7, 89) (dual of [(191, 7), 1159, 90]-NRT-code) [i]
6No linear OOA(2178, 191, F2, 8, 89) (dual of [(191, 8), 1350, 90]-NRT-code) [i]