Information on Result #552891
There is no linear OOA(2178, 191, F2, 2, 89) (dual of [(191, 2), 204, 90]-NRT-code), because 1 step m-reduction would yield linear OA(2177, 191, F2, 88) (dual of [191, 14, 89]-code), but
- residual code [i] would yield linear OA(289, 102, F2, 44) (dual of [102, 13, 45]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2178, 191, F2, 3, 89) (dual of [(191, 3), 395, 90]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2178, 191, F2, 4, 89) (dual of [(191, 4), 586, 90]-NRT-code) | [i] | ||
3 | No linear OOA(2178, 191, F2, 5, 89) (dual of [(191, 5), 777, 90]-NRT-code) | [i] | ||
4 | No linear OOA(2178, 191, F2, 6, 89) (dual of [(191, 6), 968, 90]-NRT-code) | [i] | ||
5 | No linear OOA(2178, 191, F2, 7, 89) (dual of [(191, 7), 1159, 90]-NRT-code) | [i] | ||
6 | No linear OOA(2178, 191, F2, 8, 89) (dual of [(191, 8), 1350, 90]-NRT-code) | [i] |