Information on Result #553104

There is no linear OOA(2185, 211, F2, 2, 89) (dual of [(211, 2), 237, 90]-NRT-code), because 3 step m-reduction would yield linear OA(2182, 211, F2, 86) (dual of [211, 29, 87]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2185, 211, F2, 3, 89) (dual of [(211, 3), 448, 90]-NRT-code) [i]Depth Reduction
2No linear OOA(2185, 211, F2, 4, 89) (dual of [(211, 4), 659, 90]-NRT-code) [i]
3No linear OOA(2185, 211, F2, 5, 89) (dual of [(211, 5), 870, 90]-NRT-code) [i]
4No linear OOA(2185, 211, F2, 6, 89) (dual of [(211, 6), 1081, 90]-NRT-code) [i]
5No linear OOA(2185, 211, F2, 7, 89) (dual of [(211, 7), 1292, 90]-NRT-code) [i]
6No linear OOA(2185, 211, F2, 8, 89) (dual of [(211, 8), 1503, 90]-NRT-code) [i]