Information on Result #553104
There is no linear OOA(2185, 211, F2, 2, 89) (dual of [(211, 2), 237, 90]-NRT-code), because 3 step m-reduction would yield linear OA(2182, 211, F2, 86) (dual of [211, 29, 87]-code), but
- adding a parity check bit [i] would yield linear OA(2183, 212, F2, 87) (dual of [212, 29, 88]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2185, 211, F2, 3, 89) (dual of [(211, 3), 448, 90]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2185, 211, F2, 4, 89) (dual of [(211, 4), 659, 90]-NRT-code) | [i] | ||
3 | No linear OOA(2185, 211, F2, 5, 89) (dual of [(211, 5), 870, 90]-NRT-code) | [i] | ||
4 | No linear OOA(2185, 211, F2, 6, 89) (dual of [(211, 6), 1081, 90]-NRT-code) | [i] | ||
5 | No linear OOA(2185, 211, F2, 7, 89) (dual of [(211, 7), 1292, 90]-NRT-code) | [i] | ||
6 | No linear OOA(2185, 211, F2, 8, 89) (dual of [(211, 8), 1503, 90]-NRT-code) | [i] |