Information on Result #553165

There is no linear OOA(2187, 211, F2, 2, 91) (dual of [(211, 2), 235, 92]-NRT-code), because 5 step m-reduction would yield linear OA(2182, 211, F2, 86) (dual of [211, 29, 87]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2187, 211, F2, 3, 91) (dual of [(211, 3), 446, 92]-NRT-code) [i]Depth Reduction
2No linear OOA(2187, 211, F2, 4, 91) (dual of [(211, 4), 657, 92]-NRT-code) [i]
3No linear OOA(2187, 211, F2, 5, 91) (dual of [(211, 5), 868, 92]-NRT-code) [i]
4No linear OOA(2187, 211, F2, 6, 91) (dual of [(211, 6), 1079, 92]-NRT-code) [i]
5No linear OOA(2187, 211, F2, 7, 91) (dual of [(211, 7), 1290, 92]-NRT-code) [i]
6No linear OOA(2187, 211, F2, 8, 91) (dual of [(211, 8), 1501, 92]-NRT-code) [i]