Information on Result #553252

There is no linear OOA(2190, 239, F2, 2, 91) (dual of [(239, 2), 288, 92]-NRT-code), because 1 step m-reduction would yield linear OA(2189, 239, F2, 90) (dual of [239, 50, 91]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2190, 239, F2, 3, 91) (dual of [(239, 3), 527, 92]-NRT-code) [i]Depth Reduction
2No linear OOA(2190, 239, F2, 4, 91) (dual of [(239, 4), 766, 92]-NRT-code) [i]
3No linear OOA(2190, 239, F2, 5, 91) (dual of [(239, 5), 1005, 92]-NRT-code) [i]
4No linear OOA(2190, 239, F2, 6, 91) (dual of [(239, 6), 1244, 92]-NRT-code) [i]
5No linear OOA(2190, 239, F2, 7, 91) (dual of [(239, 7), 1483, 92]-NRT-code) [i]
6No linear OOA(2190, 239, F2, 8, 91) (dual of [(239, 8), 1722, 92]-NRT-code) [i]