Information on Result #553342

There is no linear OOA(2193, 218, F2, 2, 93) (dual of [(218, 2), 243, 94]-NRT-code), because 1 step m-reduction would yield linear OA(2192, 218, F2, 92) (dual of [218, 26, 93]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2193, 218, F2, 3, 93) (dual of [(218, 3), 461, 94]-NRT-code) [i]Depth Reduction
2No linear OOA(2193, 218, F2, 4, 93) (dual of [(218, 4), 679, 94]-NRT-code) [i]
3No linear OOA(2193, 218, F2, 5, 93) (dual of [(218, 5), 897, 94]-NRT-code) [i]
4No linear OOA(2193, 218, F2, 6, 93) (dual of [(218, 6), 1115, 94]-NRT-code) [i]
5No linear OOA(2193, 218, F2, 7, 93) (dual of [(218, 7), 1333, 94]-NRT-code) [i]
6No linear OOA(2193, 218, F2, 8, 93) (dual of [(218, 8), 1551, 94]-NRT-code) [i]