Information on Result #553477

There is no linear OOA(2197, 202, F2, 2, 101) (dual of [(202, 2), 207, 102]-NRT-code), because 5 step m-reduction would yield linear OA(2192, 202, F2, 96) (dual of [202, 10, 97]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2197, 202, F2, 3, 101) (dual of [(202, 3), 409, 102]-NRT-code) [i]Depth Reduction
2No linear OOA(2197, 202, F2, 4, 101) (dual of [(202, 4), 611, 102]-NRT-code) [i]
3No linear OOA(2197, 202, F2, 5, 101) (dual of [(202, 5), 813, 102]-NRT-code) [i]
4No linear OOA(2197, 202, F2, 6, 101) (dual of [(202, 6), 1015, 102]-NRT-code) [i]
5No linear OOA(2197, 202, F2, 7, 101) (dual of [(202, 7), 1217, 102]-NRT-code) [i]
6No linear OOA(2197, 202, F2, 8, 101) (dual of [(202, 8), 1419, 102]-NRT-code) [i]