Information on Result #553517
There is no linear OOA(2198, 194, F2, 2, 106) (dual of [(194, 2), 190, 107]-NRT-code), because 10 step m-reduction would yield linear OA(2188, 194, F2, 96) (dual of [194, 6, 97]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2198, 194, F2, 3, 106) (dual of [(194, 3), 384, 107]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2198, 194, F2, 4, 106) (dual of [(194, 4), 578, 107]-NRT-code) | [i] | ||
3 | No linear OOA(2198, 194, F2, 5, 106) (dual of [(194, 5), 772, 107]-NRT-code) | [i] | ||
4 | No linear OOA(2198, 194, F2, 6, 106) (dual of [(194, 6), 966, 107]-NRT-code) | [i] | ||
5 | No linear OOA(2198, 194, F2, 7, 106) (dual of [(194, 7), 1160, 107]-NRT-code) | [i] | ||
6 | No linear OOA(2198, 194, F2, 8, 106) (dual of [(194, 8), 1354, 107]-NRT-code) | [i] |