Information on Result #553544

There is no linear OOA(2199, 207, F2, 2, 101) (dual of [(207, 2), 215, 102]-NRT-code), because 1 step m-reduction would yield linear OA(2198, 207, F2, 100) (dual of [207, 9, 101]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2199, 207, F2, 3, 101) (dual of [(207, 3), 422, 102]-NRT-code) [i]Depth Reduction
2No linear OOA(2199, 207, F2, 4, 101) (dual of [(207, 4), 629, 102]-NRT-code) [i]
3No linear OOA(2199, 207, F2, 5, 101) (dual of [(207, 5), 836, 102]-NRT-code) [i]
4No linear OOA(2199, 207, F2, 6, 101) (dual of [(207, 6), 1043, 102]-NRT-code) [i]
5No linear OOA(2199, 207, F2, 7, 101) (dual of [(207, 7), 1250, 102]-NRT-code) [i]
6No linear OOA(2199, 207, F2, 8, 101) (dual of [(207, 8), 1457, 102]-NRT-code) [i]