Information on Result #553572

There is no linear OOA(2200, 231, F2, 2, 97) (dual of [(231, 2), 262, 98]-NRT-code), because 1 step m-reduction would yield linear OA(2199, 231, F2, 96) (dual of [231, 32, 97]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2200, 231, F2, 3, 97) (dual of [(231, 3), 493, 98]-NRT-code) [i]Depth Reduction
2No linear OOA(2200, 231, F2, 4, 97) (dual of [(231, 4), 724, 98]-NRT-code) [i]
3No linear OOA(2200, 231, F2, 5, 97) (dual of [(231, 5), 955, 98]-NRT-code) [i]
4No linear OOA(2200, 231, F2, 6, 97) (dual of [(231, 6), 1186, 98]-NRT-code) [i]
5No linear OOA(2200, 231, F2, 7, 97) (dual of [(231, 7), 1417, 98]-NRT-code) [i]
6No linear OOA(2200, 231, F2, 8, 97) (dual of [(231, 8), 1648, 98]-NRT-code) [i]