Information on Result #553572
There is no linear OOA(2200, 231, F2, 2, 97) (dual of [(231, 2), 262, 98]-NRT-code), because 1 step m-reduction would yield linear OA(2199, 231, F2, 96) (dual of [231, 32, 97]-code), but
- residual code [i] would yield OA(2103, 134, S2, 48), but
- the linear programming bound shows that M ≥ 14817 140394 002966 911489 108655 371959 926784 / 1391 278625 > 2103 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2200, 231, F2, 3, 97) (dual of [(231, 3), 493, 98]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2200, 231, F2, 4, 97) (dual of [(231, 4), 724, 98]-NRT-code) | [i] | ||
3 | No linear OOA(2200, 231, F2, 5, 97) (dual of [(231, 5), 955, 98]-NRT-code) | [i] | ||
4 | No linear OOA(2200, 231, F2, 6, 97) (dual of [(231, 6), 1186, 98]-NRT-code) | [i] | ||
5 | No linear OOA(2200, 231, F2, 7, 97) (dual of [(231, 7), 1417, 98]-NRT-code) | [i] | ||
6 | No linear OOA(2200, 231, F2, 8, 97) (dual of [(231, 8), 1648, 98]-NRT-code) | [i] |