Information on Result #553613

There is no linear OOA(2201, 194, F2, 2, 109) (dual of [(194, 2), 187, 110]-NRT-code), because 13 step m-reduction would yield linear OA(2188, 194, F2, 96) (dual of [194, 6, 97]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2201, 194, F2, 3, 109) (dual of [(194, 3), 381, 110]-NRT-code) [i]Depth Reduction
2No linear OOA(2201, 194, F2, 4, 109) (dual of [(194, 4), 575, 110]-NRT-code) [i]
3No linear OOA(2201, 194, F2, 5, 109) (dual of [(194, 5), 769, 110]-NRT-code) [i]
4No linear OOA(2201, 194, F2, 6, 109) (dual of [(194, 6), 963, 110]-NRT-code) [i]
5No linear OOA(2201, 194, F2, 7, 109) (dual of [(194, 7), 1157, 110]-NRT-code) [i]
6No linear OOA(2201, 194, F2, 8, 109) (dual of [(194, 8), 1351, 110]-NRT-code) [i]