Information on Result #553613
There is no linear OOA(2201, 194, F2, 2, 109) (dual of [(194, 2), 187, 110]-NRT-code), because 13 step m-reduction would yield linear OA(2188, 194, F2, 96) (dual of [194, 6, 97]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2201, 194, F2, 3, 109) (dual of [(194, 3), 381, 110]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2201, 194, F2, 4, 109) (dual of [(194, 4), 575, 110]-NRT-code) | [i] | ||
3 | No linear OOA(2201, 194, F2, 5, 109) (dual of [(194, 5), 769, 110]-NRT-code) | [i] | ||
4 | No linear OOA(2201, 194, F2, 6, 109) (dual of [(194, 6), 963, 110]-NRT-code) | [i] | ||
5 | No linear OOA(2201, 194, F2, 7, 109) (dual of [(194, 7), 1157, 110]-NRT-code) | [i] | ||
6 | No linear OOA(2201, 194, F2, 8, 109) (dual of [(194, 8), 1351, 110]-NRT-code) | [i] |