Information on Result #553641

There is no linear OOA(2202, 202, F2, 2, 106) (dual of [(202, 2), 202, 107]-NRT-code), because 10 step m-reduction would yield linear OA(2192, 202, F2, 96) (dual of [202, 10, 97]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2202, 202, F2, 3, 106) (dual of [(202, 3), 404, 107]-NRT-code) [i]Depth Reduction
2No linear OOA(2202, 202, F2, 4, 106) (dual of [(202, 4), 606, 107]-NRT-code) [i]
3No linear OOA(2202, 202, F2, 5, 106) (dual of [(202, 5), 808, 107]-NRT-code) [i]
4No linear OOA(2202, 202, F2, 6, 106) (dual of [(202, 6), 1010, 107]-NRT-code) [i]
5No linear OOA(2202, 202, F2, 7, 106) (dual of [(202, 7), 1212, 107]-NRT-code) [i]
6No linear OOA(2202, 202, F2, 8, 106) (dual of [(202, 8), 1414, 107]-NRT-code) [i]