Information on Result #553670

There is no linear OOA(2203, 202, F2, 2, 107) (dual of [(202, 2), 201, 108]-NRT-code), because 11 step m-reduction would yield linear OA(2192, 202, F2, 96) (dual of [202, 10, 97]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2203, 202, F2, 3, 107) (dual of [(202, 3), 403, 108]-NRT-code) [i]Depth Reduction
2No linear OOA(2203, 202, F2, 4, 107) (dual of [(202, 4), 605, 108]-NRT-code) [i]
3No linear OOA(2203, 202, F2, 5, 107) (dual of [(202, 5), 807, 108]-NRT-code) [i]
4No linear OOA(2203, 202, F2, 6, 107) (dual of [(202, 6), 1009, 108]-NRT-code) [i]
5No linear OOA(2203, 202, F2, 7, 107) (dual of [(202, 7), 1211, 108]-NRT-code) [i]
6No linear OOA(2203, 202, F2, 8, 107) (dual of [(202, 8), 1413, 108]-NRT-code) [i]