Information on Result #553699

There is no linear OOA(2204, 202, F2, 2, 108) (dual of [(202, 2), 200, 109]-NRT-code), because 12 step m-reduction would yield linear OA(2192, 202, F2, 96) (dual of [202, 10, 97]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2204, 202, F2, 3, 108) (dual of [(202, 3), 402, 109]-NRT-code) [i]Depth Reduction
2No linear OOA(2204, 202, F2, 4, 108) (dual of [(202, 4), 604, 109]-NRT-code) [i]
3No linear OOA(2204, 202, F2, 5, 108) (dual of [(202, 5), 806, 109]-NRT-code) [i]
4No linear OOA(2204, 202, F2, 6, 108) (dual of [(202, 6), 1008, 109]-NRT-code) [i]
5No linear OOA(2204, 202, F2, 7, 108) (dual of [(202, 7), 1210, 109]-NRT-code) [i]
6No linear OOA(2204, 202, F2, 8, 108) (dual of [(202, 8), 1412, 109]-NRT-code) [i]