Information on Result #553813
There is no linear OOA(2208, 211, F2, 2, 108) (dual of [(211, 2), 214, 109]-NRT-code), because 4 step m-reduction would yield linear OA(2204, 211, F2, 104) (dual of [211, 7, 105]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2208, 211, F2, 3, 108) (dual of [(211, 3), 425, 109]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2208, 211, F2, 4, 108) (dual of [(211, 4), 636, 109]-NRT-code) | [i] | ||
3 | No linear OOA(2208, 211, F2, 5, 108) (dual of [(211, 5), 847, 109]-NRT-code) | [i] | ||
4 | No linear OOA(2208, 211, F2, 6, 108) (dual of [(211, 6), 1058, 109]-NRT-code) | [i] | ||
5 | No linear OOA(2208, 211, F2, 7, 108) (dual of [(211, 7), 1269, 109]-NRT-code) | [i] | ||
6 | No linear OOA(2208, 211, F2, 8, 108) (dual of [(211, 8), 1480, 109]-NRT-code) | [i] |