Information on Result #554139

There is no linear OOA(2220, 217, F2, 2, 117) (dual of [(217, 2), 214, 118]-NRT-code), because 13 step m-reduction would yield linear OA(2207, 217, F2, 104) (dual of [217, 10, 105]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2220, 217, F2, 3, 117) (dual of [(217, 3), 431, 118]-NRT-code) [i]Depth Reduction
2No linear OOA(2220, 217, F2, 4, 117) (dual of [(217, 4), 648, 118]-NRT-code) [i]
3No linear OOA(2220, 217, F2, 5, 117) (dual of [(217, 5), 865, 118]-NRT-code) [i]
4No linear OOA(2220, 217, F2, 6, 117) (dual of [(217, 6), 1082, 118]-NRT-code) [i]
5No linear OOA(2220, 217, F2, 7, 117) (dual of [(217, 7), 1299, 118]-NRT-code) [i]
6No linear OOA(2220, 217, F2, 8, 117) (dual of [(217, 8), 1516, 118]-NRT-code) [i]