Information on Result #554141
There is no linear OOA(2220, 211, F2, 2, 120) (dual of [(211, 2), 202, 121]-NRT-code), because 16 step m-reduction would yield linear OA(2204, 211, F2, 104) (dual of [211, 7, 105]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2220, 211, F2, 3, 120) (dual of [(211, 3), 413, 121]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2220, 211, F2, 4, 120) (dual of [(211, 4), 624, 121]-NRT-code) | [i] | ||
3 | No linear OOA(2220, 211, F2, 5, 120) (dual of [(211, 5), 835, 121]-NRT-code) | [i] | ||
4 | No linear OOA(2220, 211, F2, 6, 120) (dual of [(211, 6), 1046, 121]-NRT-code) | [i] | ||
5 | No linear OOA(2220, 211, F2, 7, 120) (dual of [(211, 7), 1257, 121]-NRT-code) | [i] | ||
6 | No linear OOA(2220, 211, F2, 8, 120) (dual of [(211, 8), 1468, 121]-NRT-code) | [i] |