Information on Result #554142

There is no linear OOA(2220, 209, F2, 2, 121) (dual of [(209, 2), 198, 122]-NRT-code), because 21 step m-reduction would yield linear OA(2199, 209, F2, 100) (dual of [209, 10, 101]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2220, 209, F2, 3, 121) (dual of [(209, 3), 407, 122]-NRT-code) [i]Depth Reduction
2No linear OOA(2220, 209, F2, 4, 121) (dual of [(209, 4), 616, 122]-NRT-code) [i]
3No linear OOA(2220, 209, F2, 5, 121) (dual of [(209, 5), 825, 122]-NRT-code) [i]
4No linear OOA(2220, 209, F2, 6, 121) (dual of [(209, 6), 1034, 122]-NRT-code) [i]
5No linear OOA(2220, 209, F2, 7, 121) (dual of [(209, 7), 1243, 122]-NRT-code) [i]
6No linear OOA(2220, 209, F2, 8, 121) (dual of [(209, 8), 1452, 122]-NRT-code) [i]