Information on Result #554193
There is no linear OOA(2222, 211, F2, 2, 122) (dual of [(211, 2), 200, 123]-NRT-code), because 18 step m-reduction would yield linear OA(2204, 211, F2, 104) (dual of [211, 7, 105]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2222, 211, F2, 3, 122) (dual of [(211, 3), 411, 123]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2222, 211, F2, 4, 122) (dual of [(211, 4), 622, 123]-NRT-code) | [i] | ||
3 | No linear OOA(2222, 211, F2, 5, 122) (dual of [(211, 5), 833, 123]-NRT-code) | [i] | ||
4 | No linear OOA(2222, 211, F2, 6, 122) (dual of [(211, 6), 1044, 123]-NRT-code) | [i] | ||
5 | No linear OOA(2222, 211, F2, 7, 122) (dual of [(211, 7), 1255, 123]-NRT-code) | [i] | ||
6 | No linear OOA(2222, 211, F2, 8, 122) (dual of [(211, 8), 1466, 123]-NRT-code) | [i] |