Information on Result #554607
There is no linear OOA(2239, 335, F2, 2, 107) (dual of [(335, 2), 431, 108]-NRT-code), because 1 step m-reduction would yield linear OA(2238, 335, F2, 106) (dual of [335, 97, 107]-code), but
- construction Y1 [i] would yield
- OA(2237, 299, S2, 106), but
- the linear programming bound shows that M ≥ 2 372623 864838 720824 144751 616230 912568 605364 469958 081012 522169 374458 839809 772727 298051 538944 / 10 001354 293176 388857 > 2237 [i]
- OA(297, 335, S2, 36), but
- discarding factors would yield OA(297, 324, S2, 36), but
- the Rao or (dual) Hamming bound shows that M ≥ 158757 007614 184387 760434 595956 > 297 [i]
- discarding factors would yield OA(297, 324, S2, 36), but
- OA(2237, 299, S2, 106), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2239, 335, F2, 3, 107) (dual of [(335, 3), 766, 108]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2239, 335, F2, 4, 107) (dual of [(335, 4), 1101, 108]-NRT-code) | [i] | ||
3 | No linear OOA(2239, 335, F2, 5, 107) (dual of [(335, 5), 1436, 108]-NRT-code) | [i] | ||
4 | No linear OOA(2239, 335, F2, 6, 107) (dual of [(335, 6), 1771, 108]-NRT-code) | [i] | ||
5 | No linear OOA(2239, 335, F2, 7, 107) (dual of [(335, 7), 2106, 108]-NRT-code) | [i] | ||
6 | No linear OOA(2239, 335, F2, 8, 107) (dual of [(335, 8), 2441, 108]-NRT-code) | [i] |