Information on Result #554638

There is no linear OOA(2240, 236, F2, 2, 128) (dual of [(236, 2), 232, 129]-NRT-code), because 16 step m-reduction would yield linear OA(2224, 236, F2, 112) (dual of [236, 12, 113]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2240, 236, F2, 3, 128) (dual of [(236, 3), 468, 129]-NRT-code) [i]Depth Reduction
2No linear OOA(2240, 236, F2, 4, 128) (dual of [(236, 4), 704, 129]-NRT-code) [i]
3No linear OOA(2240, 236, F2, 5, 128) (dual of [(236, 5), 940, 129]-NRT-code) [i]
4No linear OOA(2240, 236, F2, 6, 128) (dual of [(236, 6), 1176, 129]-NRT-code) [i]
5No linear OOA(2240, 236, F2, 7, 128) (dual of [(236, 7), 1412, 129]-NRT-code) [i]
6No linear OOA(2240, 236, F2, 8, 128) (dual of [(236, 8), 1648, 129]-NRT-code) [i]