Information on Result #554857

There is no linear OOA(2248, 242, F2, 2, 133) (dual of [(242, 2), 236, 134]-NRT-code), because 13 step m-reduction would yield linear OA(2235, 242, F2, 120) (dual of [242, 7, 121]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2248, 242, F2, 3, 133) (dual of [(242, 3), 478, 134]-NRT-code) [i]Depth Reduction
2No linear OOA(2248, 242, F2, 4, 133) (dual of [(242, 4), 720, 134]-NRT-code) [i]
3No linear OOA(2248, 242, F2, 5, 133) (dual of [(242, 5), 962, 134]-NRT-code) [i]
4No linear OOA(2248, 242, F2, 6, 133) (dual of [(242, 6), 1204, 134]-NRT-code) [i]
5No linear OOA(2248, 242, F2, 7, 133) (dual of [(242, 7), 1446, 134]-NRT-code) [i]
6No linear OOA(2248, 242, F2, 8, 133) (dual of [(242, 8), 1688, 134]-NRT-code) [i]