Information on Result #554857
There is no linear OOA(2248, 242, F2, 2, 133) (dual of [(242, 2), 236, 134]-NRT-code), because 13 step m-reduction would yield linear OA(2235, 242, F2, 120) (dual of [242, 7, 121]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2248, 242, F2, 3, 133) (dual of [(242, 3), 478, 134]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2248, 242, F2, 4, 133) (dual of [(242, 4), 720, 134]-NRT-code) | [i] | ||
3 | No linear OOA(2248, 242, F2, 5, 133) (dual of [(242, 5), 962, 134]-NRT-code) | [i] | ||
4 | No linear OOA(2248, 242, F2, 6, 133) (dual of [(242, 6), 1204, 134]-NRT-code) | [i] | ||
5 | No linear OOA(2248, 242, F2, 7, 133) (dual of [(242, 7), 1446, 134]-NRT-code) | [i] | ||
6 | No linear OOA(2248, 242, F2, 8, 133) (dual of [(242, 8), 1688, 134]-NRT-code) | [i] |