Information on Result #554913
There is no linear OOA(2250, 259, F2, 2, 127) (dual of [(259, 2), 268, 128]-NRT-code), because 3 step m-reduction would yield linear OA(2247, 259, F2, 124) (dual of [259, 12, 125]-code), but
- residual code [i] would yield OA(2123, 134, S2, 62), but
- the linear programming bound shows that M ≥ 2988 104534 524490 882287 758271 510214 606848 / 247 > 2123 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2250, 259, F2, 3, 127) (dual of [(259, 3), 527, 128]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2250, 259, F2, 4, 127) (dual of [(259, 4), 786, 128]-NRT-code) | [i] | ||
3 | No linear OOA(2250, 259, F2, 5, 127) (dual of [(259, 5), 1045, 128]-NRT-code) | [i] | ||
4 | No linear OOA(2250, 259, F2, 6, 127) (dual of [(259, 6), 1304, 128]-NRT-code) | [i] | ||
5 | No linear OOA(2250, 259, F2, 7, 127) (dual of [(259, 7), 1563, 128]-NRT-code) | [i] | ||
6 | No linear OOA(2250, 259, F2, 8, 127) (dual of [(259, 8), 1822, 128]-NRT-code) | [i] |