Information on Result #554971
There is no linear OOA(2252, 269, F2, 2, 125) (dual of [(269, 2), 286, 126]-NRT-code), because 1 step m-reduction would yield linear OA(2251, 269, F2, 124) (dual of [269, 18, 125]-code), but
- residual code [i] would yield OA(2127, 144, S2, 62), but
- the linear programming bound shows that M ≥ 1 097070 350953 105606 205919 734360 020713 734144 / 5719 > 2127 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2252, 269, F2, 3, 125) (dual of [(269, 3), 555, 126]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2252, 269, F2, 4, 125) (dual of [(269, 4), 824, 126]-NRT-code) | [i] | ||
3 | No linear OOA(2252, 269, F2, 5, 125) (dual of [(269, 5), 1093, 126]-NRT-code) | [i] | ||
4 | No linear OOA(2252, 269, F2, 6, 125) (dual of [(269, 6), 1362, 126]-NRT-code) | [i] | ||
5 | No linear OOA(2252, 269, F2, 7, 125) (dual of [(269, 7), 1631, 126]-NRT-code) | [i] | ||
6 | No linear OOA(2252, 269, F2, 8, 125) (dual of [(269, 8), 1900, 126]-NRT-code) | [i] |