Information on Result #555006
There is no linear OOA(2253, 271, F2, 2, 125) (dual of [(271, 2), 289, 126]-NRT-code), because 1 step m-reduction would yield linear OA(2252, 271, F2, 124) (dual of [271, 19, 125]-code), but
- residual code [i] would yield OA(2128, 146, S2, 62), but
- the linear programming bound shows that M ≥ 10 546031 115613 724859 656905 833525 360409 444352 / 30229 > 2128 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2253, 271, F2, 3, 125) (dual of [(271, 3), 560, 126]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2253, 271, F2, 4, 125) (dual of [(271, 4), 831, 126]-NRT-code) | [i] | ||
3 | No linear OOA(2253, 271, F2, 5, 125) (dual of [(271, 5), 1102, 126]-NRT-code) | [i] | ||
4 | No linear OOA(2253, 271, F2, 6, 125) (dual of [(271, 6), 1373, 126]-NRT-code) | [i] | ||
5 | No linear OOA(2253, 271, F2, 7, 125) (dual of [(271, 7), 1644, 126]-NRT-code) | [i] | ||
6 | No linear OOA(2253, 271, F2, 8, 125) (dual of [(271, 8), 1915, 126]-NRT-code) | [i] |