Information on Result #555008
There is no linear OOA(2253, 267, F2, 2, 127) (dual of [(267, 2), 281, 128]-NRT-code), because 3 step m-reduction would yield linear OA(2250, 267, F2, 124) (dual of [267, 17, 125]-code), but
- residual code [i] would yield OA(2126, 142, S2, 62), but
- the linear programming bound shows that M ≥ 944964 132939 446113 037791 284838 020323 213312 / 10545 > 2126 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2253, 267, F2, 3, 127) (dual of [(267, 3), 548, 128]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2253, 267, F2, 4, 127) (dual of [(267, 4), 815, 128]-NRT-code) | [i] | ||
3 | No linear OOA(2253, 267, F2, 5, 127) (dual of [(267, 5), 1082, 128]-NRT-code) | [i] | ||
4 | No linear OOA(2253, 267, F2, 6, 127) (dual of [(267, 6), 1349, 128]-NRT-code) | [i] | ||
5 | No linear OOA(2253, 267, F2, 7, 127) (dual of [(267, 7), 1616, 128]-NRT-code) | [i] | ||
6 | No linear OOA(2253, 267, F2, 8, 127) (dual of [(267, 8), 1883, 128]-NRT-code) | [i] |