Information on Result #555106

There is no linear OOA(2256, 332, F2, 2, 121) (dual of [(332, 2), 408, 122]-NRT-code), because 11 step m-reduction would yield linear OA(2245, 332, F2, 110) (dual of [332, 87, 111]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2256, 332, F2, 3, 121) (dual of [(332, 3), 740, 122]-NRT-code) [i]Depth Reduction
2No linear OOA(2256, 332, F2, 4, 121) (dual of [(332, 4), 1072, 122]-NRT-code) [i]
3No linear OOA(2256, 332, F2, 5, 121) (dual of [(332, 5), 1404, 122]-NRT-code) [i]
4No linear OOA(2256, 332, F2, 6, 121) (dual of [(332, 6), 1736, 122]-NRT-code) [i]
5No linear OOA(2256, 332, F2, 7, 121) (dual of [(332, 7), 2068, 122]-NRT-code) [i]
6No linear OOA(2256, 332, F2, 8, 121) (dual of [(332, 8), 2400, 122]-NRT-code) [i]