Information on Result #555110

There is no linear OOA(2256, 265, F2, 2, 129) (dual of [(265, 2), 274, 130]-NRT-code), because 1 step m-reduction would yield linear OA(2255, 265, F2, 128) (dual of [265, 10, 129]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2256, 265, F2, 3, 129) (dual of [(265, 3), 539, 130]-NRT-code) [i]Depth Reduction
2No linear OOA(2256, 265, F2, 4, 129) (dual of [(265, 4), 804, 130]-NRT-code) [i]
3No linear OOA(2256, 265, F2, 5, 129) (dual of [(265, 5), 1069, 130]-NRT-code) [i]
4No linear OOA(2256, 265, F2, 6, 129) (dual of [(265, 6), 1334, 130]-NRT-code) [i]
5No linear OOA(2256, 265, F2, 7, 129) (dual of [(265, 7), 1599, 130]-NRT-code) [i]
6No linear OOA(2256, 265, F2, 8, 129) (dual of [(265, 8), 1864, 130]-NRT-code) [i]