Information on Result #555111

There is no linear OOA(2256, 262, F2, 2, 130) (dual of [(262, 2), 268, 131]-NRT-code), because 2 step m-reduction would yield linear OA(2254, 262, F2, 128) (dual of [262, 8, 129]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2256, 262, F2, 3, 130) (dual of [(262, 3), 530, 131]-NRT-code) [i]Depth Reduction
2No linear OOA(2256, 262, F2, 4, 130) (dual of [(262, 4), 792, 131]-NRT-code) [i]
3No linear OOA(2256, 262, F2, 5, 130) (dual of [(262, 5), 1054, 131]-NRT-code) [i]
4No linear OOA(2256, 262, F2, 6, 130) (dual of [(262, 6), 1316, 131]-NRT-code) [i]
5No linear OOA(2256, 262, F2, 7, 130) (dual of [(262, 7), 1578, 131]-NRT-code) [i]
6No linear OOA(2256, 262, F2, 8, 130) (dual of [(262, 8), 1840, 131]-NRT-code) [i]