Information on Result #555120

There is no linear OOA(2256, 242, F2, 2, 141) (dual of [(242, 2), 228, 142]-NRT-code), because 21 step m-reduction would yield linear OA(2235, 242, F2, 120) (dual of [242, 7, 121]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2256, 242, F2, 3, 141) (dual of [(242, 3), 470, 142]-NRT-code) [i]Depth Reduction
2No linear OOA(2256, 242, F2, 4, 141) (dual of [(242, 4), 712, 142]-NRT-code) [i]
3No linear OOA(2256, 242, F2, 5, 141) (dual of [(242, 5), 954, 142]-NRT-code) [i]
4No linear OOA(2256, 242, F2, 6, 141) (dual of [(242, 6), 1196, 142]-NRT-code) [i]
5No linear OOA(2256, 242, F2, 7, 141) (dual of [(242, 7), 1438, 142]-NRT-code) [i]
6No linear OOA(2256, 242, F2, 8, 141) (dual of [(242, 8), 1680, 142]-NRT-code) [i]