Information on Result #555144
There is no linear OOA(2257, 262, F2, 2, 131) (dual of [(262, 2), 267, 132]-NRT-code), because 3 step m-reduction would yield linear OA(2254, 262, F2, 128) (dual of [262, 8, 129]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2257, 262, F2, 3, 131) (dual of [(262, 3), 529, 132]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2257, 262, F2, 4, 131) (dual of [(262, 4), 791, 132]-NRT-code) | [i] | ||
3 | No linear OOA(2257, 262, F2, 5, 131) (dual of [(262, 5), 1053, 132]-NRT-code) | [i] | ||
4 | No linear OOA(2257, 262, F2, 6, 131) (dual of [(262, 6), 1315, 132]-NRT-code) | [i] | ||
5 | No linear OOA(2257, 262, F2, 7, 131) (dual of [(262, 7), 1577, 132]-NRT-code) | [i] | ||
6 | No linear OOA(2257, 262, F2, 8, 131) (dual of [(262, 8), 1839, 132]-NRT-code) | [i] |