Information on Result #555145
There is no linear OOA(2257, 260, F2, 2, 132) (dual of [(260, 2), 263, 133]-NRT-code), because 4 step m-reduction would yield linear OA(2253, 260, F2, 128) (dual of [260, 7, 129]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2257, 260, F2, 3, 132) (dual of [(260, 3), 523, 133]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2257, 260, F2, 4, 132) (dual of [(260, 4), 783, 133]-NRT-code) | [i] | ||
3 | No linear OOA(2257, 260, F2, 5, 132) (dual of [(260, 5), 1043, 133]-NRT-code) | [i] | ||
4 | No linear OOA(2257, 260, F2, 6, 132) (dual of [(260, 6), 1303, 133]-NRT-code) | [i] | ||
5 | No linear OOA(2257, 260, F2, 7, 132) (dual of [(260, 7), 1563, 133]-NRT-code) | [i] | ||
6 | No linear OOA(2257, 260, F2, 8, 132) (dual of [(260, 8), 1823, 133]-NRT-code) | [i] |