Information on Result #555211
There is no linear OOA(2259, 332, F2, 2, 124) (dual of [(332, 2), 405, 125]-NRT-code), because 14 step m-reduction would yield linear OA(2245, 332, F2, 110) (dual of [332, 87, 111]-code), but
- construction Y1 [i] would yield
- OA(2244, 300, S2, 110), but
- the linear programming bound shows that M ≥ 727209 932038 995964 963694 786156 506719 769259 430085 807852 102717 045283 079365 167115 254635 995296 956416 / 21378 491075 472167 578125 > 2244 [i]
- OA(287, 332, S2, 32), but
- discarding factors would yield OA(287, 302, S2, 32), but
- the Rao or (dual) Hamming bound shows that M ≥ 161 699122 225452 699910 750634 > 287 [i]
- discarding factors would yield OA(287, 302, S2, 32), but
- OA(2244, 300, S2, 110), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2259, 332, F2, 3, 124) (dual of [(332, 3), 737, 125]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2259, 332, F2, 4, 124) (dual of [(332, 4), 1069, 125]-NRT-code) | [i] | ||
3 | No linear OOA(2259, 332, F2, 5, 124) (dual of [(332, 5), 1401, 125]-NRT-code) | [i] | ||
4 | No linear OOA(2259, 332, F2, 6, 124) (dual of [(332, 6), 1733, 125]-NRT-code) | [i] | ||
5 | No linear OOA(2259, 332, F2, 7, 124) (dual of [(332, 7), 2065, 125]-NRT-code) | [i] | ||
6 | No linear OOA(2259, 332, F2, 8, 124) (dual of [(332, 8), 2397, 125]-NRT-code) | [i] |