Information on Result #555213
There is no linear OOA(2259, 275, F2, 2, 129) (dual of [(275, 2), 291, 130]-NRT-code), because 1 step m-reduction would yield linear OA(2258, 275, F2, 128) (dual of [275, 17, 129]-code), but
- residual code [i] would yield OA(2130, 146, S2, 64), but
- the linear programming bound shows that M ≥ 4188 532932 170896 179262 970335 880775 460666 212352 / 2 937077 > 2130 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2259, 275, F2, 3, 129) (dual of [(275, 3), 566, 130]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2259, 275, F2, 4, 129) (dual of [(275, 4), 841, 130]-NRT-code) | [i] | ||
3 | No linear OOA(2259, 275, F2, 5, 129) (dual of [(275, 5), 1116, 130]-NRT-code) | [i] | ||
4 | No linear OOA(2259, 275, F2, 6, 129) (dual of [(275, 6), 1391, 130]-NRT-code) | [i] | ||
5 | No linear OOA(2259, 275, F2, 7, 129) (dual of [(275, 7), 1666, 130]-NRT-code) | [i] | ||
6 | No linear OOA(2259, 275, F2, 8, 129) (dual of [(275, 8), 1941, 130]-NRT-code) | [i] |