Information on Result #555252
There is no linear OOA(2260, 277, F2, 2, 129) (dual of [(277, 2), 294, 130]-NRT-code), because 1 step m-reduction would yield linear OA(2259, 277, F2, 128) (dual of [277, 18, 129]-code), but
- residual code [i] would yield OA(2131, 148, S2, 64), but
- the linear programming bound shows that M ≥ 37846 106847 625102 676119 046386 674320 128891 420672 / 12 104235 > 2131 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2260, 277, F2, 3, 129) (dual of [(277, 3), 571, 130]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2260, 277, F2, 4, 129) (dual of [(277, 4), 848, 130]-NRT-code) | [i] | ||
3 | No linear OOA(2260, 277, F2, 5, 129) (dual of [(277, 5), 1125, 130]-NRT-code) | [i] | ||
4 | No linear OOA(2260, 277, F2, 6, 129) (dual of [(277, 6), 1402, 130]-NRT-code) | [i] | ||
5 | No linear OOA(2260, 277, F2, 7, 129) (dual of [(277, 7), 1679, 130]-NRT-code) | [i] | ||
6 | No linear OOA(2260, 277, F2, 8, 129) (dual of [(277, 8), 1956, 130]-NRT-code) | [i] |