Information on Result #555252

There is no linear OOA(2260, 277, F2, 2, 129) (dual of [(277, 2), 294, 130]-NRT-code), because 1 step m-reduction would yield linear OA(2259, 277, F2, 128) (dual of [277, 18, 129]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2260, 277, F2, 3, 129) (dual of [(277, 3), 571, 130]-NRT-code) [i]Depth Reduction
2No linear OOA(2260, 277, F2, 4, 129) (dual of [(277, 4), 848, 130]-NRT-code) [i]
3No linear OOA(2260, 277, F2, 5, 129) (dual of [(277, 5), 1125, 130]-NRT-code) [i]
4No linear OOA(2260, 277, F2, 6, 129) (dual of [(277, 6), 1402, 130]-NRT-code) [i]
5No linear OOA(2260, 277, F2, 7, 129) (dual of [(277, 7), 1679, 130]-NRT-code) [i]
6No linear OOA(2260, 277, F2, 8, 129) (dual of [(277, 8), 1956, 130]-NRT-code) [i]