Information on Result #555254

There is no linear OOA(2260, 266, F2, 2, 132) (dual of [(266, 2), 272, 133]-NRT-code), because 4 step m-reduction would yield linear OA(2256, 266, F2, 128) (dual of [266, 10, 129]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2260, 266, F2, 3, 132) (dual of [(266, 3), 538, 133]-NRT-code) [i]Depth Reduction
2No linear OOA(2260, 266, F2, 4, 132) (dual of [(266, 4), 804, 133]-NRT-code) [i]
3No linear OOA(2260, 266, F2, 5, 132) (dual of [(266, 5), 1070, 133]-NRT-code) [i]
4No linear OOA(2260, 266, F2, 6, 132) (dual of [(266, 6), 1336, 133]-NRT-code) [i]
5No linear OOA(2260, 266, F2, 7, 132) (dual of [(266, 7), 1602, 133]-NRT-code) [i]
6No linear OOA(2260, 266, F2, 8, 132) (dual of [(266, 8), 1868, 133]-NRT-code) [i]