Information on Result #555257

There is no linear OOA(2260, 260, F2, 2, 135) (dual of [(260, 2), 260, 136]-NRT-code), because 7 step m-reduction would yield linear OA(2253, 260, F2, 128) (dual of [260, 7, 129]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2260, 260, F2, 3, 135) (dual of [(260, 3), 520, 136]-NRT-code) [i]Depth Reduction
2No linear OOA(2260, 260, F2, 4, 135) (dual of [(260, 4), 780, 136]-NRT-code) [i]
3No linear OOA(2260, 260, F2, 5, 135) (dual of [(260, 5), 1040, 136]-NRT-code) [i]
4No linear OOA(2260, 260, F2, 6, 135) (dual of [(260, 6), 1300, 136]-NRT-code) [i]
5No linear OOA(2260, 260, F2, 7, 135) (dual of [(260, 7), 1560, 136]-NRT-code) [i]
6No linear OOA(2260, 260, F2, 8, 135) (dual of [(260, 8), 1820, 136]-NRT-code) [i]