Information on Result #555258

There is no linear OOA(2260, 259, F2, 2, 136) (dual of [(259, 2), 258, 137]-NRT-code), because 8 step m-reduction would yield linear OA(2252, 259, F2, 128) (dual of [259, 7, 129]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2260, 259, F2, 3, 136) (dual of [(259, 3), 517, 137]-NRT-code) [i]Depth Reduction
2No linear OOA(2260, 259, F2, 4, 136) (dual of [(259, 4), 776, 137]-NRT-code) [i]
3No linear OOA(2260, 259, F2, 5, 136) (dual of [(259, 5), 1035, 137]-NRT-code) [i]
4No linear OOA(2260, 259, F2, 6, 136) (dual of [(259, 6), 1294, 137]-NRT-code) [i]
5No linear OOA(2260, 259, F2, 7, 136) (dual of [(259, 7), 1553, 137]-NRT-code) [i]
6No linear OOA(2260, 259, F2, 8, 136) (dual of [(259, 8), 1812, 137]-NRT-code) [i]