Information on Result #556613
There is no linear OOA(3154, 247, F3, 2, 98) (dual of [(247, 2), 340, 99]-NRT-code), because 2 step m-reduction would yield linear OA(3152, 247, F3, 96) (dual of [247, 95, 97]-code), but
- residual code [i] would yield OA(356, 150, S3, 32), but
- the linear programming bound shows that M ≥ 1 042121 495058 696990 589459 594226 638528 877701 897049 834059 577395 312500 / 1911 837015 144775 294785 556339 011193 770361 > 356 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3154, 247, F3, 3, 98) (dual of [(247, 3), 587, 99]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3154, 247, F3, 4, 98) (dual of [(247, 4), 834, 99]-NRT-code) | [i] | ||
3 | No linear OOA(3154, 247, F3, 5, 98) (dual of [(247, 5), 1081, 99]-NRT-code) | [i] |