Information on Result #556657
There is no linear OOA(3157, 248, F3, 2, 100) (dual of [(248, 2), 339, 101]-NRT-code), because 1 step m-reduction would yield linear OA(3156, 248, F3, 99) (dual of [248, 92, 100]-code), but
- residual code [i] would yield OA(357, 148, S3, 33), but
- the linear programming bound shows that M ≥ 339310 353108 625838 622205 253005 107344 580119 357971 883548 907069 767680 / 208 213577 356617 676998 634448 123348 499991 > 357 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3157, 248, F3, 3, 100) (dual of [(248, 3), 587, 101]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3157, 248, F3, 4, 100) (dual of [(248, 4), 835, 101]-NRT-code) | [i] | ||
3 | No linear OOA(3157, 248, F3, 5, 100) (dual of [(248, 5), 1083, 101]-NRT-code) | [i] |