Information on Result #556889
There is no linear OOA(3172, 271, F3, 2, 109) (dual of [(271, 2), 370, 110]-NRT-code), because 1 step m-reduction would yield linear OA(3171, 271, F3, 108) (dual of [271, 100, 109]-code), but
- residual code [i] would yield OA(363, 162, S3, 36), but
- the linear programming bound shows that M ≥ 30537 376444 154082 792008 033056 093457 463995 561684 102574 748326 099431 937479 049865 570539 909893 549089 121176 962447 114240 / 24160 878961 702993 374371 377103 187944 861163 361489 184695 568441 973584 234745 463135 533607 > 363 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3172, 271, F3, 3, 109) (dual of [(271, 3), 641, 110]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3172, 271, F3, 4, 109) (dual of [(271, 4), 912, 110]-NRT-code) | [i] | ||
3 | No linear OOA(3172, 271, F3, 5, 109) (dual of [(271, 5), 1183, 110]-NRT-code) | [i] |