Information on Result #557751
There is no linear OOA(3213, 254, F3, 2, 139) (dual of [(254, 2), 295, 140]-NRT-code), because 1 step m-reduction would yield linear OA(3212, 254, F3, 138) (dual of [254, 42, 139]-code), but
- residual code [i] would yield OA(374, 115, S3, 46), but
- the linear programming bound shows that M ≥ 8 763908 391706 642886 730085 119289 615348 861817 414825 091166 679403 / 41 340331 803107 168784 037085 > 374 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3213, 254, F3, 3, 139) (dual of [(254, 3), 549, 140]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3213, 254, F3, 4, 139) (dual of [(254, 4), 803, 140]-NRT-code) | [i] | ||
3 | No linear OOA(3213, 254, F3, 5, 139) (dual of [(254, 5), 1057, 140]-NRT-code) | [i] |