Information on Result #558182
There is no linear OOA(3227, 360, F3, 2, 145) (dual of [(360, 2), 493, 146]-NRT-code), because 1 step m-reduction would yield linear OA(3226, 360, F3, 144) (dual of [360, 134, 145]-code), but
- residual code [i] would yield linear OA(382, 215, F3, 48) (dual of [215, 133, 49]-code), but
- the Johnson bound shows that N ≤ 2633 391490 584373 459265 026071 777086 821369 449862 527703 301746 510338 < 3133 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3227, 360, F3, 3, 145) (dual of [(360, 3), 853, 146]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3227, 360, F3, 4, 145) (dual of [(360, 4), 1213, 146]-NRT-code) | [i] | ||
3 | No linear OOA(3227, 360, F3, 5, 145) (dual of [(360, 5), 1573, 146]-NRT-code) | [i] |