Information on Result #58110

There is no OA(290, 143, S2, 40), because the linear programming bound shows that M ≥ 317300 634780 115553 893444 812307 057689 267816 890368 / 255 074823 257151 213225 > 290

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(291, 144, S2, 41) [i]Truncation
2No OOA(291, 143, S2, 2, 41) [i]m-Reduction for OOAs
3No OOA(290, 143, S2, 2, 40) [i]Depth Reduction
4No OOA(290, 143, S2, 3, 40) [i]
5No OOA(290, 143, S2, 4, 40) [i]
6No OOA(290, 143, S2, 5, 40) [i]
7No OOA(290, 143, S2, 6, 40) [i]
8No OOA(290, 143, S2, 7, 40) [i]
9No OOA(290, 143, S2, 8, 40) [i]
10No (50, 90, 143)-net in base 2 [i]Extracting Embedded Orthogonal Array
11No linear OA(2170, 224, F2, 80) (dual of [224, 54, 81]-code) [i]Residual Code