Information on Result #58125

There is no OA(292, 132, S2, 42), because the linear programming bound shows that M ≥ 160 065156 181904 731162 621032 564883 718144 / 27991 938975 > 292

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(293, 133, S2, 43) [i]Truncation
2No OOA(293, 132, S2, 2, 43) [i]m-Reduction for OOAs
3No OOA(292, 132, S2, 2, 42) [i]Depth Reduction
4No OOA(292, 132, S2, 3, 42) [i]
5No OOA(292, 132, S2, 4, 42) [i]
6No OOA(292, 132, S2, 5, 42) [i]
7No OOA(292, 132, S2, 6, 42) [i]
8No OOA(292, 132, S2, 7, 42) [i]
9No OOA(292, 132, S2, 8, 42) [i]
10No (50, 92, 132)-net in base 2 [i]Extracting Embedded Orthogonal Array
11No linear OA(2176, 217, F2, 84) (dual of [217, 41, 85]-code) [i]Residual Code