Information on Result #58213

There is no OA(2108, 120, S2, 54), because the linear programming bound shows that M ≥ 134999 718321 905518 341792 904559 722496 / 357 > 2108

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(2109, 121, S2, 55) [i]Truncation
2No OOA(2109, 120, S2, 2, 55) [i]m-Reduction for OOAs
3No OOA(2111, 120, S2, 2, 57) [i]
4No OOA(2112, 120, S2, 2, 58) [i]
5No OOA(2113, 120, S2, 2, 59) [i]
6No OOA(2108, 120, S2, 2, 54) [i]Depth Reduction
7No OOA(2108, 120, S2, 3, 54) [i]
8No OOA(2108, 120, S2, 4, 54) [i]
9No OOA(2108, 120, S2, 5, 54) [i]
10No OOA(2108, 120, S2, 6, 54) [i]
11No OOA(2108, 120, S2, 7, 54) [i]
12No OOA(2108, 120, S2, 8, 54) [i]
13No (54, 108, 120)-net in base 2 [i]Extracting Embedded Orthogonal Array