Information on Result #58213
There is no OA(2108, 120, S2, 54), because the linear programming bound shows that M ≥ 134999 718321 905518 341792 904559 722496 / 357 > 2108
Mode: Bound.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No OA(2109, 121, S2, 55) | [i] | Truncation | |
2 | No OOA(2109, 120, S2, 2, 55) | [i] | m-Reduction for OOAs | |
3 | No OOA(2111, 120, S2, 2, 57) | [i] | ||
4 | No OOA(2112, 120, S2, 2, 58) | [i] | ||
5 | No OOA(2113, 120, S2, 2, 59) | [i] | ||
6 | No OOA(2108, 120, S2, 2, 54) | [i] | Depth Reduction | |
7 | No OOA(2108, 120, S2, 3, 54) | [i] | ||
8 | No OOA(2108, 120, S2, 4, 54) | [i] | ||
9 | No OOA(2108, 120, S2, 5, 54) | [i] | ||
10 | No OOA(2108, 120, S2, 6, 54) | [i] | ||
11 | No OOA(2108, 120, S2, 7, 54) | [i] | ||
12 | No OOA(2108, 120, S2, 8, 54) | [i] | ||
13 | No (54, 108, 120)-net in base 2 | [i] | Extracting Embedded Orthogonal Array |